organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Hydroxy-3-methoxybenzaldehydenicotinamide (1/1)

Fiona N.-F. How,^a M. S. Amalina,^a Hamid Khaledi^{b*} and Hapipah Mohd Ali^b

^aDepartment of Biomedical Sciences, Kulliyah of Science, IIUM Kuantan, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: khaledi@siswa.um.edu.my

Received 24 October 2011; accepted 31 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.112; data-to-parameter ratio = 11.7.

In the title compound, C₆H₆N₂O·C₈H₈O₃, an equimolar cocrystal of nicotinamide and vanillin, the aromatic ring and the amide fragment of the nicotinamide molecule make a dihedral angle of 32.6 (2) $^{\circ}$. The vanillin molecule is almost planar, with an r.m.s. deviation for all non-H atoms of 0.0094 Å. The vaniline and nicotinamide aromatic rings are nearly coplanar, the dihedral angle between them being $3.20 (9)^{\circ}$. In the crystal, the two components are linked through N-H···O and $O-H \cdots N$ hydrogen bonds into chains along the *a* axis. The chains are connected via $C-H \cdots O$ interactions, forming a three-dimensional polymeric structure.

Related literature

For the crystal structure of nicotinamide, see: Miwa et al. (1999); Li et al. (2011). For the structure of vanillin, see: Velavan et al. (1995).

Crystal data C₆H₆N₂O·C₈H₈O₃ $M_r = 274.27$ Triclinic, P1 a = 4.8979 (1) Å

b	= 8.5440 (2)	Å
с	= 15.4713 (4)	Å
α	$= 98.108 \ (1)^{\circ}$	
β	$= 92.810 \ (2)^{\circ}$	

 $\gamma = 94.784 \ (2)^{\circ}$ V = 637.52 (3) Å³ Z = 2Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.977, \ T_{\rm max} = 0.996$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.112$ S = 1.052243 reflections 191 parameters 4 restraints

3432 measured reflections 2243 independent reflections 1862 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$

 $\mu = 0.11 \text{ mm}^{-1}$

 $0.22 \times 0.14 \times 0.04$ mm

T = 100 K

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.28$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O4^{i}$	0.87 (2)	2.05 (2)	2.900 (2)	167 (2)
$N1 - H1B \cdot \cdot \cdot O2^{ii}$	0.87 (2)	2.42 (2)	3.085 (2)	134 (2)
$N1 - H1B \cdot \cdot \cdot O3^{ii}$	0.87 (2)	2.20 (2)	3.019 (2)	156 (2)
$O2-H2 \cdot \cdot \cdot N2^{iii}$	0.85 (2)	1.80 (2)	2.634 (2)	164 (2)
$C8-H8A\cdotsO1^{iv}$	0.98	2.59	3.381 (3)	137
$C8-H8C\cdots O2^{i}$	0.98	2.55	3.337 (2)	138
$C13-H13\cdots O1^{v}$	0.95	2.49	3.185 (3)	130

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z; (iii) x + 1, y, z; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

IIUM is acknowledged for funding this study (Endowment fund A No. EDWA10-150-0697).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2471).

References

- Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, J., Bourne, S. A. & Caira, M. R. (2011). Chem. Commun. 47, 1530-1532. Miwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst.
- B55 78-84 Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Velavan, R., Sureshkumar, P., Sivakumar, K. & Natarajan, S. (1995). Acta Cryst. C51, 1131-1133.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, o3168 [doi:10.1107/S1600536811045648]

4-Hydroxy-3-methoxybenzaldehyde-nicotinamide (1/1)

F. N.-F. How, M. S. Amalina, H. Khaledi and H. Mohd Ali

Comment

The crystal structures of nicotinamide (Miwa *et al.*,1999; Li *et al.*, 2011) and 4-hydroxy-3-methoxybenzaldehyde, vanillin, (Velavan *et al.*,1995) have been previously reported. The title compound is an equimolar cocrystal of nicotinamide and vanillin (Fig. 1). The nicotinamide aromatic ring and the plane of the amide fragment, N1—C9—O4, are twisted with respect to each other, making a dihedral angle of $32.6 (2)^\circ$. The vanillin molecule is essentially planar, the highest deviation from the best plane passing through all non-H atoms being 0.0156 (13) Å for O3 atom. In the crystal, the molecules of nicotinamide and vanillin are linked through N—H…O and O—H…N hydrogen bonds into infinite chains along the *a* axis (Fig. 2). The chains are connected *via* C—H…O interactions (Table 1 and Fig. 2) to form a three-dimensional polymeric structure.

Experimental

A mixture of vanillin (1.52 g, 0.1 mol) and nicotinamide (1.22 g, 0.1 mol) in ethanol (30 ml) was heated for 1 hr. The solvent was then evaporated partially and the solution was left at room temperature. The colorless crystals of the title compound were obtained in a day.

Refinement

The C-bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with C—H distances of 0.95 (aryl) and 0.98 (methyl) Å. The N– and O-bound H atoms were located in a difference Fourier map, and refined with distance restraints of O—H = 0.84 (2) Å and N—H = 0.88 (2) Å. For all H atoms, $U_{iso}(H)$ was set to 1.2–1.5_{eq}(carrier atom). An additional rigid-bond type restraint (*DELU* in *SHELXL97*) was placed on the displacement parameters of C1 and C2.

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

Fig. 2. A chain along the *a* axis formed by N—H…O and O—H…N hydrogen bonds.

4-Hydroxy-3-methoxybenzaldehyde-nicotinamide (1/1)

Crystal data

$C_6H_6N_2O \cdot C_8H_8O_3$	Z = 2
$M_r = 274.27$	F(000) = 288
Triclinic, <i>P</i> T	$D_{\rm x} = 1.429 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 4.8979 (1) Å	Cell parameters from 1226 reflections
b = 8.5440 (2) Å	$\theta = 2.6 - 29.7^{\circ}$
c = 15.4713 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\alpha = 98.108 \ (1)^{\circ}$	T = 100 K
$\beta = 92.810 \ (2)^{\circ}$	Lath, colorless
$\gamma = 94.784 \ (2)^{\circ}$	$0.22 \times 0.14 \times 0.04 \text{ mm}$
V = 637.52 (3) Å ³	

Data collection

Bruker APEXII CCD diffractometer	2243 independent reflections
Radiation source: fine-focus sealed tube	1862 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.019$
ϕ and ω scans	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -5 \rightarrow 5$
$T_{\min} = 0.977, \ T_{\max} = 0.996$	$k = -10 \rightarrow 10$
3432 measured reflections	$l = -18 \rightarrow 18$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0439P)^{2} + 0.4685P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.3651 (3)	0.83011 (19)	0.61085 (10)	0.0359 (4)
O2	0.8107 (3)	0.63328 (16)	0.23075 (9)	0.0195 (3)
H2	0.949 (4)	0.698 (2)	0.2250 (15)	0.029*
03	0.4028 (3)	0.44026 (16)	0.25734 (9)	0.0218 (3)
C1	0.3070 (5)	0.7306 (3)	0.54863 (14)	0.0286 (5)
H1	0.1529	0.6570	0.5522	0.034*
C2	0.4516 (4)	0.7113 (2)	0.46701 (13)	0.0210 (4)
C3	0.6726 (4)	0.8148 (2)	0.45164 (13)	0.0221 (5)
Н3	0.7380	0.9016	0.4951	0.026*
C4	0.7972 (4)	0.7912 (2)	0.37307 (13)	0.0204 (4)
H4	0.9482	0.8620	0.3629	0.024*
C5	0.7035 (4)	0.6648 (2)	0.30888 (12)	0.0166 (4)
C6	0.4793 (4)	0.5600 (2)	0.32443 (12)	0.0176 (4)
C7	0.3561 (4)	0.5847 (2)	0.40255 (13)	0.0208 (5)
H7	0.2040	0.5146	0.4128	0.025*
C8	0.1709 (4)	0.3323 (2)	0.26827 (14)	0.0217 (5)
H8A	0.2110	0.2765	0.3179	0.033*
H8B	0.1328	0.2551	0.2150	0.033*
H8C	0.0103	0.3917	0.2793	0.033*
O4	0.8254 (3)	0.71964 (19)	-0.04761 (9)	0.0299 (4)
N1	0.3766 (4)	0.6341 (2)	-0.07875 (11)	0.0205 (4)
H1A	0.207 (3)	0.645 (3)	-0.0672 (14)	0.025*
H1B	0.415 (4)	0.586 (2)	-0.1293 (11)	0.025*
N2	0.2385 (3)	0.80224 (19)	0.18395 (10)	0.0170 (4)
C9	0.5840 (4)	0.7129 (2)	-0.02755 (13)	0.0197 (4)
C10	0.5123 (4)	0.7959 (2)	0.05932 (12)	0.0169 (4)
C11	0.6653 (4)	0.9350 (2)	0.09779 (13)	0.0201 (4)
H11	0.8121	0.9801	0.0687	0.024*
C12	0.5998 (4)	1.0066 (2)	0.17913 (13)	0.0220 (5)
H12	0.6997	1.1023	0.2066	0.026*
C13	0.3864 (4)	0.9363 (2)	0.21971 (13)	0.0192 (4)
H13	0.3429	0.9856	0.2757	0.023*
C14	0.3015 (4)	0.7346 (2)	0.10499 (12)	0.0162 (4)
H14	0.1966	0.6397	0.0788	0.019*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0440 (10)	0.0363 (9)	0.0266 (9)	0.0056 (8)	0.0038 (7)	0.0006 (7)
O2	0.0182 (8)	0.0217 (7)	0.0174 (7)	-0.0031 (6)	0.0053 (6)	0.0004 (6)
03	0.0223 (8)	0.0214 (7)	0.0198 (7)	-0.0045 (6)	0.0064 (6)	-0.0016 (6)
C1	0.0356 (13)	0.0308 (12)	0.0189 (10)	0.0104 (10)	-0.0028 (9)	-0.0012 (9)
C2	0.0226 (11)	0.0246 (11)	0.0170 (10)	0.0074 (8)	0.0004 (8)	0.0045 (8)
C3	0.0270 (11)	0.0214 (10)	0.0165 (10)	0.0060 (9)	-0.0036 (8)	-0.0020 (8)
C4	0.0187 (10)	0.0193 (10)	0.0218 (11)	-0.0018 (8)	-0.0001 (8)	0.0014 (8)
C5	0.0157 (10)	0.0209 (10)	0.0145 (9)	0.0054 (8)	0.0026 (8)	0.0043 (8)
C6	0.0193 (10)	0.0176 (10)	0.0157 (10)	0.0033 (8)	0.0002 (8)	0.0007 (8)
C7	0.0193 (11)	0.0242 (11)	0.0199 (10)	0.0020 (8)	0.0046 (8)	0.0055 (8)
C8	0.0185 (11)	0.0198 (10)	0.0259 (11)	-0.0031 (8)	0.0035 (8)	0.0021 (8)
04	0.0144 (8)	0.0516 (10)	0.0228 (8)	0.0064 (7)	0.0038 (6)	-0.0003 (7)
N1	0.0172 (9)	0.0279 (9)	0.0153 (9)	0.0046 (7)	0.0035 (7)	-0.0030(7)
N2	0.0171 (9)	0.0194 (8)	0.0148 (8)	0.0031 (7)	0.0012 (6)	0.0027 (6)
C9	0.0178 (11)	0.0255 (11)	0.0168 (10)	0.0055 (8)	0.0018 (8)	0.0042 (8)
C10	0.0144 (10)	0.0210 (10)	0.0156 (10)	0.0038 (8)	-0.0008 (7)	0.0030 (8)
C11	0.0149 (10)	0.0240 (10)	0.0221 (10)	0.0003 (8)	0.0020 (8)	0.0058 (8)
C12	0.0227 (11)	0.0180 (10)	0.0234 (11)	-0.0030 (8)	-0.0011 (8)	-0.0002 (8)
C13	0.0217 (11)	0.0192 (10)	0.0160 (10)	0.0031 (8)	0.0002 (8)	0.0001 (8)
C14	0.0157 (10)	0.0162 (9)	0.0161 (10)	0.0009 (7)	-0.0013 (8)	0.0012 (7)

Geometric parameters (Å, °)

O1—C1	1.197 (3)	C8—H8B	0.9800
O2—C5	1.343 (2)	C8—H8C	0.9800
O2—H2	0.854 (16)	O4—C9	1.236 (2)
O3—C6	1.365 (2)	N1—C9	1.330 (3)
O3—C8	1.435 (2)	N1—H1A	0.868 (16)
C1—C2	1.474 (3)	N1—H1B	0.869 (16)
С1—Н1	0.9500	N2—C13	1.336 (2)
C2—C3	1.391 (3)	N2-C14	1.338 (2)
C2—C7	1.396 (3)	C9—C10	1.500 (3)
C3—C4	1.384 (3)	C10-C14	1.388 (3)
С3—Н3	0.9500	C10-C11	1.392 (3)
C4—C5	1.391 (3)	C11—C12	1.384 (3)
C4—H4	0.9500	C11—H11	0.9500
C5—C6	1.410 (3)	C12—C13	1.384 (3)
C6—C7	1.375 (3)	C12—H12	0.9500
С7—Н7	0.9500	С13—Н13	0.9500
C8—H8A	0.9800	C14—H14	0.9500
С5—О2—Н2	112.6 (16)	O3—C8—H8C	109.5
C6—O3—C8	117.44 (15)	H8A—C8—H8C	109.5
O1—C1—C2	126.2 (2)	H8B—C8—H8C	109.5
O1—C1—H1	116.9	C9—N1—H1A	121.6 (15)

С2—С1—Н1	116.9	C9—N1—H1B	117.5 (15)
C3—C2—C7	119.56 (18)	H1A—N1—H1B	120 (2)
C3—C2—C1	122.83 (19)	C13—N2—C14	117.72 (17)
C7—C2—C1	117.59 (19)	O4—C9—N1	123.82 (19)
C4—C3—C2	119.93 (19)	O4—C9—C10	119.84 (18)
С4—С3—Н3	120.0	N1—C9—C10	116.34 (17)
С2—С3—Н3	120.0	C14—C10—C11	118.15 (18)
C3—C4—C5	120.68 (18)	C14—C10—C9	121.73 (18)
C3—C4—H4	119.7	C11—C10—C9	120.07 (18)
C5—C4—H4	119.7	C12—C11—C10	118.88 (18)
O2—C5—C4	124.72 (18)	C12—C11—H11	120.6
O2—C5—C6	115.90 (17)	C10-C11-H11	120.6
C4—C5—C6	119.38 (18)	C13—C12—C11	118.77 (19)
O3—C6—C7	125.62 (18)	C13—C12—H12	120.6
O3—C6—C5	114.82 (17)	C11—C12—H12	120.6
C7—C6—C5	119.56 (18)	N2-C13-C12	123.12 (18)
C6—C7—C2	120.88 (19)	N2—C13—H13	118.4
С6—С7—Н7	119.6	C12—C13—H13	118.4
С2—С7—Н7	119.6	N2-C14-C10	123.34 (18)
O3—C8—H8A	109.5	N2-C14-H14	118.3
O3—C8—H8B	109.5	C10-C14-H14	118.3
H8A—C8—H8B	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A···O4 ⁱ	0.87 (2)	2.05 (2)	2.900 (2)	167 (2)
N1—H1B···O2 ⁱⁱ	0.87 (2)	2.42 (2)	3.085 (2)	134.(2)
N1—H1B···O3 ⁱⁱ	0.87 (2)	2.20 (2)	3.019 (2)	156 (2)
O2—H2···N2 ⁱⁱⁱ	0.85 (2)	1.80 (2)	2.634 (2)	164 (2)
C8—H8A···O1 ^{iv}	0.98	2.59	3.381 (3)	137.
C8—H8C···O2 ⁱ	0.98	2.55	3.337 (2)	138.
C13—H13…O1 ^v	0.95	2.49	3.185 (3)	130.
$(1, \dots, (1, \dots, $				

Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+2, -z+1.

